Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Migration of soil microbes may promote tree seedling tolerance to drying conditions.

Identifieur interne : 000066 ( Main/Exploration ); précédent : 000065; suivant : 000067

Migration of soil microbes may promote tree seedling tolerance to drying conditions.

Auteurs : Cassandra Allsup [États-Unis] ; Richard Lankau [États-Unis]

Source :

RBID : pubmed:30991447

Descripteurs français

English descriptors

Abstract

Soil-microbe interactions have the potential to mediate the ability of tree populations to persist in their current location or establish in new areas. Immigration of microbial taxa from drier conditions may promote seedling tolerance to drying climates. In a greenhouse experiment, we determined seedling performance of Ostrya virginiana and Betula nigra seedlings after experimentally swapping sterilized soils and local and foreign microbial inocula from nine sites over a gradient of precipitation and soil types, in well-watered and water reduced conditions. Swapping microbial inocula relative to abiotic soils along latitudinal, but not longitudinal, gradients resulted in reduced seedling biomass. Additionally, growth in water reduced conditions was maximized when pots were inoculated with microbes from drier sites. These results suggest that extirpation of local microbial taxa, and/or immigration of novel microbial taxa to a site may be detrimental to plant growth due to mismatches between microbes and soil conditions. However, immigration of drought adapted microbial taxa may provide additional drought tolerance to plant populations facing drying conditions. This work contributes to the understanding of how microbial interactions may potentially exacerbate or mitigate challenges to plant populations caused by climate change.

DOI: 10.1002/ecy.2729
PubMed: 30991447


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Migration of soil microbes may promote tree seedling tolerance to drying conditions.</title>
<author>
<name sortKey="Allsup, Cassandra" sort="Allsup, Cassandra" uniqKey="Allsup C" first="Cassandra" last="Allsup">Cassandra Allsup</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lankau, Richard" sort="Lankau, Richard" uniqKey="Lankau R" first="Richard" last="Lankau">Richard Lankau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30991447</idno>
<idno type="pmid">30991447</idno>
<idno type="doi">10.1002/ecy.2729</idno>
<idno type="wicri:Area/Main/Corpus">000072</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000072</idno>
<idno type="wicri:Area/Main/Curation">000072</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000072</idno>
<idno type="wicri:Area/Main/Exploration">000072</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Migration of soil microbes may promote tree seedling tolerance to drying conditions.</title>
<author>
<name sortKey="Allsup, Cassandra" sort="Allsup, Cassandra" uniqKey="Allsup C" first="Cassandra" last="Allsup">Cassandra Allsup</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lankau, Richard" sort="Lankau, Richard" uniqKey="Lankau R" first="Richard" last="Lankau">Richard Lankau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="eISSN">1939-9170</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Seedlings (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Plant (MeSH)</term>
<term>Sol (MeSH)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Seedlings</term>
<term>Soil Microbiology</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Microbiologie du sol</term>
<term>Plant</term>
<term>Sol</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil-microbe interactions have the potential to mediate the ability of tree populations to persist in their current location or establish in new areas. Immigration of microbial taxa from drier conditions may promote seedling tolerance to drying climates. In a greenhouse experiment, we determined seedling performance of Ostrya virginiana and Betula nigra seedlings after experimentally swapping sterilized soils and local and foreign microbial inocula from nine sites over a gradient of precipitation and soil types, in well-watered and water reduced conditions. Swapping microbial inocula relative to abiotic soils along latitudinal, but not longitudinal, gradients resulted in reduced seedling biomass. Additionally, growth in water reduced conditions was maximized when pots were inoculated with microbes from drier sites. These results suggest that extirpation of local microbial taxa, and/or immigration of novel microbial taxa to a site may be detrimental to plant growth due to mismatches between microbes and soil conditions. However, immigration of drought adapted microbial taxa may provide additional drought tolerance to plant populations facing drying conditions. This work contributes to the understanding of how microbial interactions may potentially exacerbate or mitigate challenges to plant populations caused by climate change.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">30991447</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-9170</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>100</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Migration of soil microbes may promote tree seedling tolerance to drying conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>e02729</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ecy.2729</ELocationID>
<Abstract>
<AbstractText>Soil-microbe interactions have the potential to mediate the ability of tree populations to persist in their current location or establish in new areas. Immigration of microbial taxa from drier conditions may promote seedling tolerance to drying climates. In a greenhouse experiment, we determined seedling performance of Ostrya virginiana and Betula nigra seedlings after experimentally swapping sterilized soils and local and foreign microbial inocula from nine sites over a gradient of precipitation and soil types, in well-watered and water reduced conditions. Swapping microbial inocula relative to abiotic soils along latitudinal, but not longitudinal, gradients resulted in reduced seedling biomass. Additionally, growth in water reduced conditions was maximized when pots were inoculated with microbes from drier sites. These results suggest that extirpation of local microbial taxa, and/or immigration of novel microbial taxa to a site may be detrimental to plant growth due to mismatches between microbes and soil conditions. However, immigration of drought adapted microbial taxa may provide additional drought tolerance to plant populations facing drying conditions. This work contributes to the understanding of how microbial interactions may potentially exacerbate or mitigate challenges to plant populations caused by climate change.</AbstractText>
<CopyrightInformation>© 2019 by the Ecological Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Allsup</LastName>
<ForeName>Cassandra</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lankau</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Wisconsin-Madison, 391 Russell Labs, 1630 Linden Dr., Madison, Wisconsin, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="Y">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">climate change</Keyword>
<Keyword MajorTopicYN="Y">drought</Keyword>
<Keyword MajorTopicYN="Y">range shifts</Keyword>
<Keyword MajorTopicYN="Y">soil biota</Keyword>
<Keyword MajorTopicYN="Y">soil microbes</Keyword>
<Keyword MajorTopicYN="Y">tree migration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30991447</ArticleId>
<ArticleId IdType="doi">10.1002/ecy.2729</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>Literature Cited</Title>
<Reference>
<Citation>Alberton, O., T. W. Kuyper, and R. C. Summerbell. 2010. Dark septate root endophytic fungi increase growth of Scots pine seedling under elevated CO2 through enhanced nitrogen use efficiency. Plant and Soil 328:459-470.</Citation>
</Reference>
<Reference>
<Citation>Ayres, E., H. Steltzer, B. L. Simmons, R. T. Simpson, J. M. Steinweg, M. D. Wallenstein, N. Mellor, W. J. Parton, J. C. Moore, and D. H. Wall. 2009. Home-field advantage accelerates leaf little decomposition in forests. Soil Biology and Biochemistry 41:606-610.</Citation>
</Reference>
<Reference>
<Citation>Bates, D., M. Mäechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1-48.</Citation>
</Reference>
<Reference>
<Citation>Berendsen, R. L., C. M. J. Pieterse, and P. A. H. M. Bakker. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17:478-486.</Citation>
</Reference>
<Reference>
<Citation>Berg, M. P., E. T. Kiers, G. Driessen, M. Van der Heijden, B. W. Kooi, F. Kuenen, M. Liefting, H. A. Verhoef, and J. Ellers. 2010. Adapt or disperse: understanding species persistence in a changing world. Global Change Biology 16:587-598.</Citation>
</Reference>
<Reference>
<Citation>Chen, I.-C., J. K. Hill, R. Ohlemüeller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026.</Citation>
</Reference>
<Reference>
<Citation>Compant, S., M. G. A. Van Der Heijden, and A. Sessitsch. 2010. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology 73:197-214.</Citation>
</Reference>
<Reference>
<Citation>di Pietro, M., J.-L. Churin, and J. Garbaye. 2007. Differential ability of ectomycorrhizas to survive drying. Mycorrhiza 17:547-550.</Citation>
</Reference>
<Reference>
<Citation>Drigo, B., G. A. Kowalchuk, and J. A. van Veen. 2008. Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biology and Fertility of Soils 44:667-679.</Citation>
</Reference>
<Reference>
<Citation>Egerton-Warburton, L. M., N. C. Johnson, and E. B. Allen. 2007. Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecological Monographs 77:527-544.</Citation>
</Reference>
<Reference>
<Citation>Fei, S., J. M. Desprez, K. M. Potter, I. Jo, J. A. Knott, and C. M. Oswalt. 2017. Divergence of species response to climate change. Science Advances 3:e1603055.</Citation>
</Reference>
<Reference>
<Citation>Finlay, B. J. 2002. Global dispersal of free-living microbial eukaryote species. Science 296:1061-1063.</Citation>
</Reference>
<Reference>
<Citation>Gehring, C. A., C. M. Sthultz, L. Flores-Rentería, A. V. Whipple, and T. G. Whitham. 2017. Tree genetics defines fungal partner communities that may confer drought tolerance. Proceedings of the National Academy of Sciences USA 114:11169-11174.</Citation>
</Reference>
<Reference>
<Citation>Goring, S. J., and J. W. Williams. 2017. Effect of historical land-use and climate change on tree-climate relationships in the upper Midwest United States. Ecology Letters 20:461-470.</Citation>
</Reference>
<Reference>
<Citation>Huang, X.-F., J. M. Chaparro, K. F. Reardon, R. Zhang, Q. Shen, and J. M. Vivanco. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267-275.</Citation>
</Reference>
<Reference>
<Citation>IPCC. 2018. Summary for policymakers. In V. Masson-Delmotte, et al., editors. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland.</Citation>
</Reference>
<Reference>
<Citation>Iverson, L. R., A. M. Prasad, S. N. Matthews, and M. Peters. 2008. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management 254:390-406.</Citation>
</Reference>
<Reference>
<Citation>Johnson, N. C., J.-H. Graham, and F. A. Smith. 2008. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135:575-585.</Citation>
</Reference>
<Reference>
<Citation>Johnson, N. C., G. W. T. Wilson, M. A. Bowker, J. A. Wilson, and R. M. Miller. 2010. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences USA 107:2093-2098.</Citation>
</Reference>
<Reference>
<Citation>Kaisermann, A., F. T. de Vries, R. I. Griffiths, and R. D. Bardgett. 2017. Legacy effects of drought on plant-soil feedbacks and plant-plant interactions. New Phytologist 215:1413-1424.</Citation>
</Reference>
<Reference>
<Citation>Keymer, D. P., and R. A. Lankau. 2017. Disruption of plant-soil-microbial relationships influence plant growth. Journal of Ecology 105:816-827.</Citation>
</Reference>
<Reference>
<Citation>Kivlin, S. N., S. M. Emery, and J. A. Rudgers. 2013. Fungal symbionts alter plant responses to global change. American Journal of Botany 100:1445-1457.</Citation>
</Reference>
<Reference>
<Citation>Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. LmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82:1-26.</Citation>
</Reference>
<Reference>
<Citation>Lau, J. A., and J. T. Lennon. 2012. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proceedings of the National Academy of Sciences USA 109:14058-14062.</Citation>
</Reference>
<Reference>
<Citation>Lozano, Y. M., C. Armas, S. Hortal, F. Casanoves, and F. I. Pugnaire. 2017. Disentangling above- and below-ground facilitation drivers in arid environments: the role of soil microorganisms, soil properties and microhabitat. New Phytologist 216:1236-1246.</Citation>
</Reference>
<Reference>
<Citation>Mandyam, K., and A. Jumpponen. 2005. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology 53:173-189.</Citation>
</Reference>
<Reference>
<Citation>Miller, R. M., and J. D. Jastrow. 2000. Mycorrhizal fungi influence soil structure. Pages 3-18 in Y. Kapulnik and D. D. Douds, editors. Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, The Netherlands.</Citation>
</Reference>
<Reference>
<Citation>Newsham, K. K. 2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytologist 190:783-793.</Citation>
</Reference>
<Reference>
<Citation>Niinemets, Ü., and F. Valladares. 2006. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecology Monographs 76:521-547.</Citation>
</Reference>
<Reference>
<Citation>Nuñez, M. A., T. R. Horton, and D. Simberloff. 2009. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352-2359.</Citation>
</Reference>
<Reference>
<Citation>O'Brien, M. J., F. I. Pugnaire, S. Rodríguez-Echeverría, J. A. Morillo, F. Martín-Usero, A. López-Escoriza, D. J. Aránega, and C. Armas. 2018. Mimicking a rainfall gradient to test the role of soil microbiota for mediating plant responses to drier conditions. Oikos 127:1776-1786.</Citation>
</Reference>
<Reference>
<Citation>Peay, K. G., M. I. Bidartondo, and A. E. Arnold. 2010a. Not every fungus is everywhere: scaling to the biogeography of fungal-plant interactions across roots, shoots and ecosystems. New Phytologist 185:878-882.</Citation>
</Reference>
<Reference>
<Citation>Peay, K. G., M. Garbelotto, and T. D. Bruns. 2010b. Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91:3631-3640.</Citation>
</Reference>
<Reference>
<Citation>Prasad, A. M., L. R. Iverson, S. N. Matthews, and M. Peters. 2007-ongoing. A climate change atlas for 134 forest tree species of the Eastern United States [database]. Northern Research Station, USDA Forest Service, Delaware, Ohio, USA.</Citation>
</Reference>
<Reference>
<Citation>Prism Climate Group. 2004. Oregon State University. http://prism.oregonstate.edu</Citation>
</Reference>
<Reference>
<Citation>Rillig, M. C., and D. L. Mummey. 2006. Mycorrhizas and soil structure. New Phytologist 171:41-53.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez, R. J., J. Henson, E. Van Volkenburgh, M. Hoy, L. Wright, F. Beckwith, Y.-O. Kim, and R. S. Redman. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME Journal 2:404-416.</Citation>
</Reference>
<Reference>
<Citation>Smith, S. E., and D. J. Read. 2008. Mycorrhizal symbiosis. Third edition. Academic Press, Oxford, UK.</Citation>
</Reference>
<Reference>
<Citation>Swanston, C., L. A. Brandt, M. K. Janowiak, S. D. Handler, P. Butler-Leopold, L. Iverson, F. R. Thompson III, T. A. Ontl, and D. P. Shannon. 2018. Vulnerability of forests of the Midwest and Northeast United States to climate change. Climatic Change 146:103-116.</Citation>
</Reference>
<Reference>
<Citation>USDA, NRCS. 2015. The plants database. National Plant Data Team, Greensboro, North Carolina, USA.</Citation>
</Reference>
<Reference>
<Citation>Valladares, F., et al. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters 17:1351-1364.</Citation>
</Reference>
<Reference>
<Citation>van der Putten, W. H., et al. 2007. Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology 101:265-276.</Citation>
</Reference>
<Reference>
<Citation>van der Putten, W. H. 2012. Climate change, above-ground-belowground interactions and species range shifts. Annual Review of Ecology, Evolution, and Systematics 43:365-383.</Citation>
</Reference>
<Reference>
<Citation>Wilson, G. W. T., C. W. Rice, M. C. Rillig, A. Springer, and D. C. Hartnett. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters 12:452-461.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Allsup, Cassandra" sort="Allsup, Cassandra" uniqKey="Allsup C" first="Cassandra" last="Allsup">Cassandra Allsup</name>
</noRegion>
<name sortKey="Lankau, Richard" sort="Lankau, Richard" uniqKey="Lankau R" first="Richard" last="Lankau">Richard Lankau</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30991447
   |texte=   Migration of soil microbes may promote tree seedling tolerance to drying conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30991447" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020